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Algorithms & Data Structures Exercise sheet 0 HS 20

�e solutions for this sheet do not have to be submi�ed. �e sheet will be solved in the �rst exercise
session on 21.09.2020.

Exercises that are marked by ∗ are challenge exercises.

Induction
�e �rst two exercises are about the principle of mathematical induction.

Exercise 0.1 Induction.

a) Prove by mathematical induction that for any positive integer n,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

• Base Case.
Let n = 1. �en:

1 =
1 · (1 + 1) · (2 + 1)

6
= 1 .

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is:

12 + 22 + 32 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
.

• Inductive Step.
Wemust show that the property holds for k+1. Let’s add (k+1)2 to both sides of our inductive
hypothesis.

12 + 22 + 32 + · · ·+ k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

By the principle of mathematical induction, this is true for any positive integer n.



b) (�is subtask is fromAugust 2019 exam). LetT : N→ R be a function that satis�es the following
two conditions:

T (n) ≥ 4 · T (n2 ) + 3n whenever n is divisible by 2;
T (1) = 4.

Prove by mathematical induction that

T (n) ≥ 6n2 − 2n

holds whenever n is a power of 2, i.e., n = 2k with k ∈ N0.

• Base Case.
Let k = 0, n = 20 = 1. �en:

T (1) = 4 ≥ 6 · 12 − 2 · 1

• Induction Hypothesis.
Assume that the property holds for some positive integerm = 2k. �at is:

T (m) ≥ 6m2 − 2m

• Inductive Step. We must show that the property holds for 2m = 2k+1.

T (2m) ≥ 4 · T (m) + 3 · 2 ·m
≥ 24m2 − 8m+ 6m

= 24m2 − 2m

≥ 24m2 − 4m

= 6 · (2m)2 − 2 · (2m) .

By the principle of mathematical induction, this is true for any positive integer n.

Exercise 0.2 Divide and Conquer.

Consider the following problem:

You are given a 2k × 2k chessboard with one missing square and as many L-shaped puzzle pieces
as you want. Each puzzle-piece can cover exactly three squares of the chessboard. As you will show
algorithmically in this exercise, it is always possible to cover such chessboards by L-shaped puzzle
pieces. An example is given in Figure 1 for k = 2, where the missing piece is a corner piece.

a) Devise a divide-and-conquer algorithm that can cover a 2k×2k chessboard with one missing square
at an arbitrary position for k ∈ {1, 2, 3, . . . }. Describe your algorithm using words. Make sure to
describe how you divide the problem into subproblems and how you handle the base case(s). Your
description should be concise (e.g., it could have a pseudo-code-like form for readability).

You can assume that each square is represented by its coordinates, speci�cally, the square in the
lower le� corner has coordinates (1, 1) and the square in the upper right corner has coordinates
(2k, 2k). �e input of your algorithm is (k, a, b), where a and b are coordinates of the missing square.

Solution:

Our induction hypothesis is that we have an algorithm A(k) that can cover a 2k × 2k chessboard
with one missing square at an arbitrary position with L-shaped puzzle pieces.
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(a) 4× 4 chessboard (b) covering

Figure 1: Example of a chessboard and its covering by L-shaped puzzle pieces.

�e base case k = 1 is trivial. �e missing square of the 2 × 2 chessboard is necessarily a corner,
and we simply place the puzzle piece on the 3 non-missing squares.

For the induction step, suppose that k ≥ 1 and that we have an algorithm A(k) that can solve the
problem for chessboards of size 2k × 2k. We will design an algorithm A(k + 1) that can do it for
a 2k+1 × 2k+1 chessboard (with one missing square). Divide the 2k+1 × 2k+1 chessboard in 4 sub-
chessboards of size 2k × 2k (see Figure 2b). First, choose the sub-chessboard containing the missing
square, and use algorithmA(k) to cover it with L-shaped pieces. For the three other sub-chessboard,
choose the square that is closest to the center of the full chessboard asmissing square (purple squares
on the picture), and use A(k) to cover them. Finally, put an L-shaped puzzle piece on the 3 central
squares that were used as missing squares.�is allows us to cover the whole 2k+1×2k+1 chessboard,
and completes the inductive description of our divide-and-conquer algorithm.

(a) 8× 8 chessboard (b) sub-chessboards

Figure 2: Step of the algorithm

b)∗ Now suppose that we want to cut out the L-shaped puzzle pieces (given by the algorithm of part
a) with scissors. We are interested in the number of straight cuts needed to cut out the pieces for
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a chessboard of size n × n, where n = 2k, and we call this number T (n). For example, we need 2
straight cuts for a 2 × 2 chessboard, i.e T (2) = 2. Note that one straight cut can be as long as we
want (we are not interested in the total length of the cuts). Our goal will be to show the upper bound
T (n) ≤ 4n2−10

3 .

1) Find a recursion formula for T (n), i.e. an upper bound for T (n) in terms of T (n/2).

Solution:

Assume that k > 1, so that n ≥ 4. We follow our recursive algorithm and start by cu�ing out
the central L-shaped piece (purple squares on Figure 2b), which requires 6 cuts. We then need
4 extra cuts to split the chessboard in 4 sub-chessboards of size n

2 ×
n
2 , and then each of these

sub-chessboards needs to be cut out themselves, which requires 4T (n2 ) cuts. �is might not be
the optimal way to cut out the puzzle pieces, but this gives the upper bound T (n) ≤ 4T (n2 )+10.

2) Using part 1, show by induction that T (n) ≤ 4n2−10
3 .

Solution:

We will show by induction on k that T (2k) = T (n) ≤ 4n2−10
3 . �e base case k = 1 holds since

indeed T (2) = 2 ≤ 2 = 4×22−10
3 . Let k > 1, n = 2k, and assume by induction that we have

T (2k−1) ≤ 4(2k−1)2−10
3 , i.e. T (n/2) ≤ 4(n/2)2−10

3 . �en using part 1 we have

T (n) ≤ 4T (n/2) + 10 = 44(n/2)2−10
3 + 10 = 4n2−10

3 + 10 = 4n2−40+30
3 = 4n2−10

3 ,

which concludes the inductive proof that T (n) ≤ 4n2−10
3 for all n = 2k.

Asymptotic Notation
When we estimate the number of elementary operations executed by algorithms, it is o�en useful
to ignore constant factors and instead use the following kind of asymptotic notation, also called O-
Notation. We denote by R+ the set of all (strictly) positive real numbers and by R+

0 the set of nonne-
gative real numbers.

De�nition 1 (O-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+. O(f) is the set
of all functions g : N → R+ such that there exists C > 0 such that for all n ∈ N , g(n) ≤ Cf(n).

For this exercise sheet we can assume that n0 = 10. In general, we say that g ≤ O(f) if De�nition
1 applies a�er restricting the domain to some N = {n0, n0 + 1, . . .}. Some sources use the notation
g = O(f) or g ∈ O(f) instead.

Instead of working with this de�nition directly, it is o�en easier to use limits in the way provided by
the following theorem.

�eorem 1 (�eorem 1.1 from the script). Let f : N → R+ and g : N → R+.

• If lim
n→∞

f(n)
g(n) = 0, then f ≤ O(g) and g 6≤ O(f).

• If lim
n→∞

f(n)
g(n) = C ∈ R+, then f ≤ O(g) and g ≤ O(f).

• If lim
n→∞

f(n)
g(n) =∞, then f 6≤ O(g) and g ≤ O(f).
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�e theorem holds all the same if the functions are de�ned on R+ instead of N . In general, lim
n→∞

f(n)
g(n)

is the same as lim
x→∞

f(x)
g(x) if the second limit exists.

Exercise 0.3 Comparison of functions part 1.

Show that

a) 2n ≤ O(3n) and 3n ≤ O(2n).

Solution:
lim
n→∞

2n

3n
=

2

3
≤ R+ ,

hence by �eorem 1, 2n ≤ O(3n) and 3n ≤ O(2n).

b) n ≤ O(n log n), but n log n 6≤ O(n).

Solution:
lim
n→∞

n

n log n
= lim

n→∞

1

log n
= 0 ,

hence by �eorem 1, n ≤ O(n log n) and n log n 6≤ O(n).

c) 10n2 + 100n+ 1000 ≤ O(n3), but n3 6≤ O(10n2 + 100n+ 1000).

Solution:
lim
n→∞

10n2 + 100n+ 1000

n3
= lim

n→∞

(10
n

+
100

n2
+

1000

n3

)
= 0 ,

hence by �eorem 1, 10n2 + 100n+ 1000 ≤ O(n3) and n3 6≤ O(10n2 + 100n+ 1000).

d) 2n ≤ O(3n), but 3n 6≤ O(2n).

Solution:
lim
n→∞

2n

3n
= lim

n→∞

(2
3

)n
= 0 ,

hence by �eorem 1, 2n ≤ O(3n) and 3n 6≤ O(2n).

�e following theorem can be useful to compute some limits.
�eorem 2 (L’Hôpital’s rule). Assume that functions f : R+ → R+ and g : R+ → R+ are di�erentiable,
lim
x→∞

f(x) = lim
x→∞

g(x) =∞ and for all x ∈ R+, g′(x) 6= 0. If lim
x→∞

f ′(x)
g′(x) = C ∈ R+

0 or lim
x→∞

f ′(x)
g′(x) =∞,

then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

Exercise 0.4 Comparison of functions part 2.

Show that

a) n lnn ≤ O(n1.01), but n1.01 6≤ O(n lnn).

Solution:We apply �eorem 2 to compute the limit of lnx
x0.01 for x→∞:

lim
x→∞

(lnx)′

(x0.01)′
= lim

x→∞

1/x

0.01x−0.99
= lim

x→∞

1

0.01x0.01
= 0 .
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Hence by �eorem 1, n lnn ≤ O(n1.01), but n1.01 6≤ O(n lnn).

b) n ≤ O(en), but en 6≤ O(n).

Solution:We apply �eorem 2 to compute the limit of x
ex for x→∞:

lim
x→∞

x′

(ex)′
= lim

x→∞

1

ex
= 0 .

Hence by �eorem 1, n ≤ O(en), but en 6≤ O(n).

c) n2 ≤ O(en), but en 6≤ O(n2).

Solution:We apply �eorem 2 to compute the limit of x2

ex for x→∞:

lim
x→∞

(x2)′

(ex)′
= lim

x→∞

2x

ex
= 2 lim

x→∞

x′

(ex)′
= 2 lim

x→∞

1

ex
= 0 .

Hence by �eorem 1, n2 ≤ O(en), but en 6≤ O(n2).

d)∗ n100 ≤ O(1.01n), but 1.01n 6≤ O(n100).

Solution: We successively apply �eorem 2 to compute the limit of x100

(1.01)x for x→∞:

lim
x→∞

(x100)′

((1.01)x)′
= lim

x→∞

(x100)′

(ex ln 1.01)′
= lim

x→∞

100x99

(ln 1.01ex ln 1.01)′
= · · · = lim

x→∞

100!

(ln 1.01)100ex ln 1.01
= 0 .

Hence by �eorem 1, n100 ≤ O(1.01n), but 1.01n 6≤ O(n100).

e)∗ log1002 n ≤ O(2
√

log2 n), but 2
√

log2 n 6≤ O(log1002 n).

Solution:

lim
n→∞

log1002 n

2
√

log2 n
= lim

n→∞

2log2(log
100
2 n)

2
√

log2 n
= lim

n→∞

2100 log2 log2 n

2
√

log2 n
= lim

n→∞
2100 log2 log2 n−

√
log2 n

Notice that

lim
n→∞

(
100 log2 log2 n−

√
log2 n

)
= lim

n→∞

(
−
√
log2 n

(
1− 100

log2 log2 n√
log2 n

))
= −∞ .

Hence
lim
n→∞

log1002 n

2
√

log2 n
= lim

n→∞
2100 log2 log2 n−

√
log2 n = 0 .

�erefore, by �eorem 1, log1002 n ≤ O(2
√

log2 n), but 2
√

log2 n 6≤ O(log1002 n).

f)∗ 2
√

log2 n ≤ O(n0.01), but n0.01 6≤ O(2
√

log2 n).

Solution:

lim
n→∞

2
√

log2 n

n0.01
= lim

n→∞

2
√

log2 n

2log(n0.01)
= lim

n→∞

2
√

log2 n

20.01 log2 n
= lim

n→∞
2
√

log2 n−0.01 log2 n
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Notice that

lim
n→∞

(√
log2 n− 0.01 log2 n

)
= lim

n→∞

(
− 0.01 log2 n

(
1−

√
log2 n

0.01 log2 n

))
= −∞ .

Hence

lim
n→∞

2
√

log2 n

n0.01
= lim

n→∞
2
√

log2 n−0.01 log2 n = 0 .

�erefore, by �eorem 1, 2
√

log2 n ≤ O(n0.01) and n0.01 6≤ O(2
√

log2 n).

For the next exercise you may use the following theorem.
�eorem 3. Let f, g, h : N→ R+. If f ≤ O(h) and g ≤ O(h), then

1. for any constant c ≥ 0, cf ≤ O(h).

2. f + g ≤ O(h).

Notice that for all real numbers a, b > 1, loga n = loga b · logb n (where loga b is a positive constant).
Hence loga n ≤ O(logb n). So you don’t have to write bases of logarithms in asymptotic notation, that
is, you can just write O(log n).

Exercise 0.5 Simplifying expressions.

Write the following in tight asymptotic notation, simplifying them as much as possible. It is guaranteed
that all functions in this exercise take values in R+ (you don’t have to prove it).

a) 5n3 + 40n2 + 100

Solution: By�eorem 1, n2 ≤ O(n3). Similarly, n ≤ O(n3). By point 1 of�eorem 3, 5n3 ≤ O(n3),
40n2 ≤ O(n3), 100 ≤ O(n3). Hence by point 2 of �eorem 3,

5n3 + 40n2 + 100 ≤ O(n3) .

b) 5n+ lnn+ 2n3 + 1
n

Solution: By �eorem 1, n ≤ O(n3), lnn ≤ O(n3), 1
n ≤ O(n

3). Hence by �eorem 3,

5n+ lnn+ 2n3 +
1

n
≤ O(n3) .

c) n lnn− 2n+ 3n2

Solution: By �eorem 1, n lnn ≤ O(n2). Hence by �eorem 3, n lnn+ 3n2 ≤ O(n2) and

n lnn− 2n+ 3n2 ≤ O(n2) ,

since 0 < n lnn− 2n+ 3n2 < n lnn+ 3n2.

d) 23n+ 4n log5 n
6 + 78

√
n− 9

Solution: By the properties of logarithms,

4n log5 n
6 = 24n log5 n ≤ O(n log n) .
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By �eorem 1, n ≤ O(n lnn) and
√
n ≤ O(n lnn). Hence by �eorem 3,

23n+ 4n log5 n
6 + 78

√
n ≤ O(n lnn)

and
23n+ 4n log5 n

6 + 78
√
n− 9 ≤ O(n lnn) ,

since
0 < 23n+ 4n log5 n

6 + 78
√
n− 9 < 23n+ 4n log5 n

6 + 78
√
n .

e) log2
√
n5 +

√
log2 n

5

Solution: By the properties of logarithms,

log2
√
n5 =

2

5
log2 n ≤ O(log n) ,

and √
log2 n

5 =
√
5 ·
√
log2 n .

By �eorem 1,
√

log2 n ≤ O(lnn). Hence by �eorem 3,

log2
√
n5 +

√
log2 n

5 ≤ O(log n) .

f)∗ 2n3 +
(

4
√
n
)log5 log6 n +

(
7
√
n
)log8 log9 n

Solution:

lim
n→∞

(
4
√
n
)log5 log6 n(

7
√
n
)log8 log9 n = lim

n→∞

n
1
4
log5 log6 n

n
1
7
log8 log9 n

= lim
n→∞

n
1
4
log5 log6 n− 1

7
log8 log9 n .

Notice that
lim
n→∞

(1
4
log5 log6 n−

1

7
log8 log9 n

)
=∞ ,

since loga x ≤ logb y if x ≤ y and a ≥ b. Hence

lim
n→∞

(
4
√
n
)log5 log6 n(

7
√
n
)log8 log9 n = lim

n→∞
n

1
4
log5 log6 n− 1

7
log8 log9 n =∞ .

�erefore, by �eorem 1,
(

7
√
n
)log8 log9 n ≤ O(n 1

4
log5 log6 n).

By �eorem 1, 2n3 ≤ O(
(

4
√
n
)log5 log6 n). Hence by �eorem 3,

2n3 +
(

4
√
n
)log5 log6 n +

(
7
√
n
)log8 log9 n ≤ O(n 1

4
log5 log6 n) .

Exercise 0.6 Some properties of O-Notation.

Let f : R+ → R+ and g : R+ → R+.
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a) Show that if f ≤ O(g), then f2 ≤ O(g2). You can assume that lim
x→∞

f(x)
g(x) = C ∈ R+

0 .

Solution:
lim
x→∞

f2(x)

g2(x)
= lim

x→∞

f(x)

g(x)
· lim
x→∞

f(x)

g(x)
= C2 ∈ R+

0 ,

hence by �eorem 1, f2 ≤ O(g2).

b) Give an example where f ≤ O(g), but 2f 6≤ O(2g).

Solution: Consider f(n) = 2n, g(n) = n. Obviously, f ≤ O(g). However,

lim
n→∞

2f(n)

2g(n)
= lim

n→∞

22n

2n
= lim

n→∞
2n =∞ ,

hence by �eorem 1, 2f 6≤ O(2g).

Another important example is f(n) = log2 n and g(n) = log4 n. As we already showed, f ≤ O(g).
However, 2f(n) = n and 2g(n) =

√
n, so by �eorem 1, 2f 6≤ O(2g).
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